
On the (In)Security of IPsec in MAC-then-Encrypt
Configurations

Jean Paul Degabriele
∗

Information Security Group
Royal Holloway, University of London

Egham, Surrey, TW20 0EX, UK
j.p.degabriele@rhul.ac.uk

Kenneth G. Paterson
†

Information Security Group
Royal Holloway, University of London

Egham, Surrey, TW20 0EX, UK
kenny.paterson@rhul.ac.uk

ABSTRACT
IPsec allows a huge amount of flexibility in the ways in which
its component cryptographic mechanisms can be combined
to build a secure communications service. This may be good
for supporting different security requirements but is poten-
tially bad for security. We demonstrate the reality of this
by describing efficient, plaintext-recovering attacks against
all configurations of IPsec in which integrity protection is
applied prior to encryption – so-called MAC-then-encrypt
configurations. We report on the implementation of our at-
tacks against a specific IPsec implementation, and reflect on
the implications of our attacks for real-world IPsec deploy-
ments as well as for theoretical cryptography.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection (e.g., firewalls)

General Terms
Security

Keywords
IPsec, ESP, AH, MAC-then-encrypt, Traffic Flow Confiden-
tiality, Fragmentation

1. INTRODUCTION
IPsec is a notoriously complex protocol suite, but one of

great importance in today’s Internet where it is deployed

∗This author’s research is funded by Vodafone Group Ser-
vices Limited, a Thomas Holloway Research Studentship,
and the Strategic Educational Pathways Scholarship Scheme
(Malta), part-financed by the European Union – European
Social Fund.
†This author’s research supported by an EPSRC Leadership
Fellowship, EP/H005455/1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

widely to build Virtual Private Networks (VPNs) and se-
cure remote access solutions. IPsec offers security at the
IP layer of the TCP/IP protocol stack, meaning that IPsec
provides cryptographic protection for IP packets (or their
payloads). Part of IPsec’s complexity arises from a delib-
erate attempt by IPsec’s designers to provide a flexible and
highly configurable approach to providing security services
for IP traffic.

The RFCs specifying the major component protocols ESP,
AH, IKE [14, 15, 9] and that describing the IPsec architec-
ture [13] offer only limited guidance to end users about how
best to configure IPsec to achieve their desired security goals.
Moreover, little security analysis of IPsec seems to have been
published. In particular, whilst it is by now well-established
that using ESP in “encryption-only” configurations is inse-
cure in general [1, 18, 5], there appears to have been no
systematic security evaluation of the many different ways
of combining encryption and integrity protection that are
allowed by IPsec:

• ESP may provide its own integrity protection, in which
case it is provided by a MAC algorithm that is applied
after ESP’s encryption – an encrypt-then-MAC con-
struction.

• Alternatively, AH can be used to provide the protec-
tion, again using a MAC algorithm, though with the
MAC algorithm having a greater scope than in ESP. In
this case, packets may be first integrity protected by
AH and then encrypted using ESP, or first encrypted
by ESP and then integrity protected by AH (where
now the extended scope of AH’s integrity protection
means that more fields of the IP header are protected
than would be the case with ESP-provided integrity
protection).

• It is even possible to achieve a MAC-then-encrypt con-
struction using two layers of ESP processing.

• Further, the current version of ESP allows combined-
mode algorithms to be used, wherein encryption and
integrity protection are rolled into a single processing
step.

• In all of the above configurations, AH and/or ESP may
each be applied in either tunnel mode or transport
mode.

• To add a final dimension, both AH and ESP allow
sequence number checking to be performed as an op-

tion, in order to provide protection against replay at-
tacks. This replay protection service should be dis-
abled if manual keying is used (see [14, Section 5] and
[15, Section 3.3.3]), is recommended to be disabled for
multicast traffic ([14, Section 3.4.3]), and may be prob-
lematic when differentiated classes of traffic are pro-
tected by a single SA ([13, Section 4.1]). As we shall
see, whether the replay protection service is disabled
or not has a significant impact on some of our attacks.

It is notable that the previous version of the IPsec ar-
chitecture [10] was more specific about which combinations
must or must not be supported in IPsec implementations
than is the current version [13]: the former required sup-
port for some basic configurations and explicitly outlawed
the combination of AH followed by ESP both in transport
mode, while the latter makes no prohibitions.

What guidance can be extracted from the literature? The-
oretical support for the encrypt-then-MAC options comes
from [2, 16], where it is shown that this approach generically
provides IND-CCA security if the component encryption al-
gorithm is IND-CPA secure (as is the case, for example, for
CBC mode encryption with a random IV) and the compo-
nent MAC algorithm is strongly unforgeable. We have also
seen many on-line tutorials giving example configurations of
this type.

Concerning MAC-then-encrypt options, it is noted in [15]
that“an underlying integrity service, such as AH, applied be-
fore encryption does not necessarily protect the encryption-
only confidentiality against active attackers”, suggesting that
such configurations should be avoided. Here, [15] cites [16]
for theoretical support. However, a closer examination of
[16] shows that it contains positive security results about
the MAC-then-encrypt construction when the encryption
scheme is implemented using either a secure stream cipher or
CBC mode of a block cipher. These are the primary encryp-
tion schemes currently supported by IPsec standards. More-
over, the known examples in [2, 16] showing that MAC-then-
encrypt constructions are not generically secure are rather
artificial. Thus the results of [16] could be interpreted as
providing support for MAC-then-encrypt configurations of
IPsec. Further support comes from a widely-cited critique of
IPsec by Schneier and Ferguson [6], which states“When both
encryption and authentication are provided, IPsec performs
the encryption first, and authenticates the ciphertext. In our
opinion this is the wrong order”and later goes on to say“The
ordering of encryption and authentication in IPsec is dan-
gerous.” In [6] the argument is made that a protocol should
authenticate what was meant, not what was said, with SSL
as analysed in [23] being given as an example of a proto-
col adopting the “correct” approach of MAC-then-encrypt.
Moreover, a putative attack against encrypt-then-MAC con-
figurations of IPsec is given in [6], lending further support
to the MAC-then-encrypt choice for IPsec1. A standard
textbook on network security [21] discusses several benefits
that accrue from using a MAC-then-encrypt configuration
of IPsec, including the ability to store MAC values along
with plaintexts for later checking. A textbook aimed at
implementors of cryptography [7] extensively discusses the

1However this attack requires the receiver to use the wrong
key when decrypting, and it is hard to envisage the circum-
stances under which this could occur in IPsec, except per-
haps with re-use of SPIs in a manually-keyed deployment.

merits and demerits of the MAC-then-encrypt approach to
building secure channels, and eventually recommends this
construction over other choices.

Given the arguments on both sides, and in the absence of
firm guidance from the RFCs or other sources, it seems plau-
sible that a network administrator might well be tempted
into selecting a MAC-then-encrypt configuration of IPsec.

1.1 Our Contributions
This paper focusses on the security of MAC-then-encrypt

configurations of IPsec. For concreteness, we study the com-
mon use case of using IPsec to build a simple site-to-site
VPN. We describe practical attacks against all MAC-then-
encrypt configurations of IPsec for this common application,
including the most natural configurations as well as more
“exotic” ones. We assume that all cryptographic processing
is carried out at a pair of security gateways, but our attacks
also extend to situations where AH processing is carried out
at hosts behind the gateways. Our attacks come in three
basic flavours, each with two main variants depending on
whether IPsec’s optional replay protection is enabled or not.
Our attacks are powerful in the sense that they can be used
to recover plaintext from arbitrary IPsec-protected packets.
But they each have different characteristics in terms of their
complexity, their requirements for the attacker’s degree of
control over the network, and their plaintext requirements.
We stress that we have not found any attacks against ESP’s
encrypt-then-MAC construction.

In developing our attacks against IPsec, we assume that
the relevant RFCs have been carefully followed by an im-
plementor. For example, our attacks exploit the recommen-
dation of the ESP RFC [15] to perform full padding checks
when decrypting, and two of them rely on support for Traf-
fic Flow Confidentiality (TFC) padding that is mandated in
[15]. One of the attacks depends on the details of IPsec’s
treatment of fragmented packets, while all depend on the
manner in which IPsec handles ICMP traffic. Our attacks
are developed with the RFC specifications in mind, but our
previous experience [5] indicates that IPsec implementations
do deviate significantly from the RFCs in ways that can stop
attacks from working in practice. To compensate for this, we
report on the experimental validation of our attacks against
the OpenSolaris implementation of IPsec, showing that two
out of three of our attacks “on paper” can be converted into
working attacks against a real implementation. We empha-
size that our choice of OpenSolaris was driven by the high
quality of its code and its close adherence to the IPsec RFCs,
and not because it has any particular weaknesses that we
wanted to exploit. We believe that our attacks would apply
to any comparably careful implementation of IPsec.

1.1.1 Practice
This paper makes a significant contribution to network se-

curity practice: it shows that certain configurations of IPsec
are insecure and should be avoided, namely those involv-
ing the application of AH followed by ESP. This confirms
and strengthens the limited guidance in [13] and firmly con-
tradicts the recommendations concerning ordering in [6, 7].
In addition, our work has implications for designers of new
protocols: our attacks highlight security deficiencies that re-
sult from IPsec’s modular approach to realising secure chan-
nels, the introduction of TFC padding, and the interplay
between IP and IPsec (in particular, fragmentation issues).

The take-away from this paper for practitioners is that ESP
with encryption and integrity protection should be used in
preference to any other configuration when confidentiality is
required.

1.1.2 Theory
This paper also has implications for cryptographic theory.

It is already known that Krawczyk’s positive results [16] con-
cerning the security of the MAC-then-encrypt construction
used in SSL/TLS need to be interpreted carefully in the light
of attacks against SSL/TLS in [4]. Our results provide a sim-
ilar demonstration in the context of IPsec. More generally,
our work highlights the limitations of current cryptographic
theory in answering the apparently simple question of how
best to combine encryption and integrity protection to build
a secure channel. While theoretical attack models and secu-
rity proofs such as those in [16] may rule out many classes
of attack, they do not always translate into strong security
guarantees for real network protocols with all their messy –
but essential – features. For example, such models usually
assume that all cryptographic processing takes place in an
atomic fashion, while our attacks exploit non-atomicity in
MAC-then-encrypt configurations of IPsec. Security models
do not typically consider padding, error messages, the pos-
sibility of ciphertext fragmentation, or interactions with en-
capsulated protocols, while our attacks exploit such features.
It is notable that, while two of our three attacks exploit the
fact that AH’s MAC does not cover all the plaintext to be
encrypted, the third attack based on fragmentation would
still work even if it did. This raises an interesting theoretical
question about the achievable security of generic composi-
tions of encryption and integrity protection mechanisms in
a model where the channel allows fragmentation of cipher-
texts.

1.2 Related Work
Previous work analysing IPsec [1, 5, 18] has focussed on

encryption-only configurations, showing them to be fatally
insecure. Our attacks on MAC-then-encrypt configurations
build on techniques developed in [5, 18], but we need to
significantly extend them to cater for the integrity protec-
tion and replay protection services supplied by AH. We note
that [5, 18] also mentioned the possible extension of the
encryption-only attacks to a limited class of other config-
urations where AH and ESP processing are carried out by
different machines. However, our work seems to be the first
to make a systematic exploration of the security of MAC-
then-encrypt configurations of IPsec. An attack against
SSL’s MAC-than-encrypt construction was reported in [4].
This attack has a similar flavour to our attacks, but dif-
fers markedly in its details and realisation. In particular,
because of the way SSL behaves when errors arise, the at-
tack of [4] can only slowly recover a fixed plaintext that is
repeated across many SSL connections. In contrast, our at-
tacks can recover arbitrary plaintext in an efficient manner.
Other related work [6, 16] is already discussed above.

2. BACKGROUND ON IP AND IPSEC
We assume the reader is familiar with the main IPsec con-

cepts (tunnel and transport modes, Security Associations
(SAs)) and protocols (AH and ESP). We also assume the
reader is familiar with IP, in particular, the format of the IP
header and the function of each of its fields. Here, we only

consider IPv4. For useful introductions to these topics, we
refer the reader to [5, 18, 21]. Below, we relate some of the
finer points concerning IPsec that are needed to understand
our attacks.

2.1 ESP
We recall that ESP usually makes use of a block cipher

algorithm operating in CBC mode: RFC 4385 [17] mandates
support for AES-CBC with 128-bit keys and TripleDES-
CBC, while no other encryption algorithm is mandated. No
combined mode (authenticated encryption) algorithms are
required to be supported. In future, we may expect com-
bined mode algorithms and AES-CTR to increase in pop-
ularity. A modification of our attacks would work against
AES-CTR, if it were not for the fact that [8] specifying AES-
CTR requires that it must be used in combination with ESP-
provided integrity protection, implicitly in an encrypt-then-
MAC construction. We assume throughout the remainder
of this paper that CBC mode is in use.

Our attacks depend in a delicate way on how padding
and CBC mode encryption (and the reverse operations of
decryption and depadding) are performed by IPsec. The
variant of CBC mode that is used by ESP is described in full
in [15, 5]. The plaintext to be protected is either an inner
IP packet (in tunnel mode) or the IP packet payload (in
transport mode). This data is treated as a sequence of bytes.
It is padded with a particular pattern of bytes and then a
Pad Length (PL) byte and a Next Header (NH) byte are
appended; this collection of bytes is called the ESP trailer.
The default padding method specified in [15] is universally
used in practice. This method adds bytes so that:

1. The total number of bytes present (including the PL
and NH byte) is aligned with a block boundary; and

2. The added pattern of padding bytes is either a null
string or t bytes of the form 1, 2, . . . , t for some t with
1 ≤ t ≤ 255.

According to [15, Section 2.7] it is permissable to precede
this padding with an arbitrary amount of Traffic Flow Con-
fidentiality (TFC) padding of unspecified format. This is in-
tended to aid in preventing traffic analysis by disguising the
true length of the inner packet. Some of our attacks exploit
support for this padding. The NH byte is present in order
that the decrypting IPsec entity can know to which protocol
it should pass the bytes that precede the padding bytes. In
tunnel mode, this value should be 04 indicating IP; in trans-
port mode, a variety of values will be found here, with local
IPsec policies determining which values are acceptable.

After adding the ESP trailer, the data is encrypted using
CBC mode. Let us assume that the byte sequence after
padding consists of q blocks, each of n bits (where n = 64 for
triple-DES and n = 128 for AES, for example). We denote
these blocks by P1, P2, . . . , Pq . We use K to denote the
key used for the block cipher algorithm and eK(·) (dK(·)) to
denote encryption (decryption) of blocks using keyK. An n-
bit initialization vector, denoted IV , is selected at random.
Then ciphertext blocks are generated according to the usual
CBC mode equations:

C0 = IV, Ci = eK(Ci−1 ⊕ Pi), (1 ≤ i ≤ q).

The encrypted portion of the packet is then defined to be the
sequence of q+1 blocks C0, C1, . . . , Cq. The basic format of
an ESP-protected packet is shown in Figure 1.

0 8 16 24 32

Sequence Number

Initial Vector (IV)

Security Parameter Index (SPI)

Payload Data (variable)

TFC Padding (optional, variable)

Padding (0 - 255 bytes)

Pad Length Next Header

E
ncryption S

cope

Figure 1: Structure of ESP protected-packet (adapted from RFC 4303 [15] for CBC mode without integrity
protection and to show encryption scope).

Next Header Payload Len Reserved

0 8 16 24 32

Security Parameter Index (SPI)

Sequence Number Field

Integrity Check Value - ICV (variable)

Figure 2: AH format according to RFC 4302 [14].

At the entity performing IPsec decryption (which is also
in possession of the key K), the padded plaintext can be
recovered using the equations:

Pi = Ci−1 ⊕ dK(Ci), (1 ≤ i ≤ q).

Any padding along with the PL and NH bytes can then
be stripped off, revealing the original inner packet/payload.
Section 2.4 of both the ESP RFCs [12, 15] states that “the
receiver SHOULD inspect the padding field”, because certain
cut-and-paste attacks are prevented if “the receiver checks
the padding values upon decryption”. We assume that an
RFC-compliant implementation performs a strict check, en-
suring that the padding conforms exactly to what is ex-
pected given the value of the PL field, and dropping the
inner datagram if the check fails2.

The receiver then reconstructs the original IP packet, with
the exact steps depending on the mode (transport or tun-
nel) and being described in [13, Section 5.2]. This process-
ing also discards any TFC padding. In tunnel mode, this
can be achieved by using the length field in the header of

2Note that weaker forms of padding check such as BSD-style
checks [5] still allow us to recover partial blocks of plaintext
in our attacks.

the inner IP packet to determine where to trim the packet.
In transport mode, this relies on the upper layer protocol
format including a length field which can be used for the
same purpose. Some of our attacks depend on support for
TFC padding at the receiver side, and we will note where
this is the case. The original IP packet is then compared
with the used SA’s traffic selectors to check that the cor-
rect cryptographic processing was applied. This check will
(implicitly) ensure that in tunnel mode the NH byte does
contain 04, for example, with the packet being dropped if
it does not. Likewise, in transport mode, the NH byte will
need to be consistent with the upper layer protocols allowed
for that SA. Finally, the packet is forwarded, either to the
upper layer protocol specified in the NH byte, or for further
cryptographic processing (when nested SAs are in use).

Note that when ESP is employed without integrity pro-
tection, the sequence number in the ESP header must not
be checked by the recipient [15, Section 3.4.3].

2.2 AH
AH, as specified in [14], provides an integrity protection

service and, in combination with sequence number checking,
a replay protection service for IP packets. The AH format is

shown in Figure 2. AH processing involves inserting the AH
fields between the IP header and payload/inner IP packet,
and then applying a MAC algorithm to selected fields of the
(outer) IP header, the AH fields, and either the payload (in
transport mode) or the inner IP packet (in tunnel mode);
a typical MAC algorithm for AH is HMAC-SHA1-96. The
calculated MAC value (ICV value) is placed in the relevant
AH field. Not all of the (outer) header fields are included
in the MAC computation because they may change in un-
predictable ways as the packet traverses an IP network; the
unprotected fields include the header checksum and TTL
fields.

At the receiver, the MAC is checked and the packet dis-
carded if the MAC is incorrect. In addition, when replay
protection is enabled, the 32-bit sequence number carried
by AH is compared to a sliding window of recently received
sequence numbers. The packet is again rejected if the se-
quence number has already been received or if it is deemed
to be too old by falling to the left of the current window. A
packet having a valid MAC and a sequence number greater
than the largest previously accepted will always be accepted,
causing the window to be shifted to the right. RFC 4302 [14]
also supports the use of 64-bit extended sequence numbers.
We assume these are not selected for simplicity of presenta-
tion, but our attacks still work if they are.

2.3 IP
A useful overview of IP sufficient to understand our at-

tacks can be found in [5]. In this paper, we will be mostly
concerned with the TTL field in the IP header and the IP
header fields related to packet fragmentation.

We recall that the TTL field is set to some initial, OS-
dependent value when a packet is first generated, and then
decreased by 1 at each router that the packet traverses.
When the TTL field reaches 0, the packet is discarded, and
an ICMP error message (of type 11 and code 0) indicating
a “time to live exceeded” event is generated and sent to the
host indicated by the original packet’s source IP address.

Support for fragmentation is a necessary part of IP im-
plementations arising from the need to cater for a variety
of lower layer protocols. The second 32-bit word in the IP
header is used to handle fragmentation issues. In particular,
the 16-bit Identification (ID) field is used to identify all the
fragments coming from a single initial packet, the MF bit
indicates that more fragments are expected after this frag-
ment, the DF bit indicates that this packet should not be
fragmented, one bit is unused, and the remaining 13 bits are
used to carry the fragment offset which is used to order frag-
ments during packet reassembly. A fragment is indicated by
a non-zero MF bit or a non-zero offset field. According to
[3], to avoid unacceptable delays in reassembling fragments,
the reassembly process must eventually time-out, with the
wait period being a fixed period that is recommended to
lie between 60 and 120 seconds. If this timeout expires,
the partially-reassembled packet must be discarded and an
ICMP Time Exceeded message (of type 11 and code 1) must
be sent to the source host.

The IPsec architecture [13] notes that AH and ESP can-
not be applied using transport mode to packets that are
fragments; only tunnel mode can be employed in such cases.
RFC 4302 [14] requires that “An IPv4 packet to which AH
has been applied may itself be fragmented by routers en route,
and such fragments must be reassembled prior to AH process-

ing at a receiver.” This feature is exploited in our attacks
based on fragmentation.

2.4 ICMP and IPsec
The IPsec architectural RFC [13] explains in detail how

IPsec should handle ICMP messages, distinguishing between
error and non-error messages. Our attacks use ICMP mes-
sages of both types, and the specific messages used in our at-
tacks are not blocked by IPsec. However, they are only visi-
ble to the attacker in encrypted form and so typically need to
be detected by their characteristic (though implementation-
dependent) lengths, or via timing correlation.

2.5 Bit Flipping in CBC Mode
We recall the following well-known property of CBC mode.

Suppose an attacker captures a ciphertext C0, C1, . . . , Cq,
then flips (inverts) a specific bit j in Ci−1 and injects the
modified ciphertext into the network. Then the attacker
induces a bit flip in position j in the plaintext block Pi as
seen by the decrypting party. This tends to randomize block
Pi−1, but if the modification is made in C0 (equal to IV),
then no damage to plaintext blocks will result. This obvi-
ously extends to flips applied to multiple bits simultaneously.

In our attacks, we will flip certain bits in the headers of
inner datagrams. Any such modifications will require further
compensation to be made elsewhere in the header so that the
Header Checksum (calculated as the 1’s complement of the
1’s complement sum of the 16-bit words in the IP header) is
still correct – otherwise the inner datagram will be silently
dropped. In [5, 18], a number of techniques were developed
for “correcting” checksums in an efficient manner. We need
to further develop these techniques so that our attacks are
efficient for the IPsec configurations considered here.

Considering each 16-bit field in the IP header as an un-
signed integer, suppose we wish to subtract the value δ from
one of these 16-bit fields. Let S represent the 1’s comple-
ment sum of all the 16-bit fields over which the checksum is
computed, then the IP header checksum is given by S (the
complement of S). Thus the new value of the IP header

checksum should be set to (S ⊞ δ) where ⊞ denotes 1’s com-
plement addition. Then we need to select a 16-bit value
mask such that:

mask⊕ S = (S ⊞ δ)

and XOR this value mask to the appropriate field in the IV.
We can rewrite this equation as:

mask = S ⊕ (S ⊞ δ) = S ⊕ (S ⊞ δ).

Hence we can, for a fixed value of δ, compute all possible
solutions mask to the above equation along with their proba-
bilities of success in correcting the checksum, assuming that
S is a uniformly distributed 16-bit value. We then use the
list of possible values mask in order of decreasing probability
when trying to correct the checksum.

An example is in order. Suppose we wish to decrease the
TTL field from a known value 0xFF to the value 0x00 and
correct the checksum. Because of the position of the TTL
field in the IP header, this implies a 16-bit value δ = 0xFF00.
Some of the resulting 66 masks having non-zero probability
are shown in Table 1 along with their probabilities. In this
case, the number of trials required is decreased from the av-
erage of 215 that would be needed using the methods of [5,

mask probability

0000 0001 0000 0001 2−2

0000 0011 0000 0001 2−3

0000 0001 0000 0011 2−3

0000 0111 0000 0001 2−4

0000 0011 0000 0011 2−4

0000 0001 0000 0111 2−4

0000 0001 0000 1111 2−5

...
...

1111 1111 1111 1111 2−16

Table 1: Table of masks and probabilities for δ =
0xFF00

18] to an average of only 6.75. On the other hand, assum-
ing nothing about the TTL field except that it is uniformly
distributed, then a simple calculation using a variant of this
approach shows that the expected number of trials needed
to set the TTL field to 0x00 and correct the checksum is
only 382.

This idea can be combined with the idea from [5] of using
the ID field to compensate for the bit flips, rather than the
checksum field itself. Because of the location of this field
in the second 32-bit word of the IP header, this allows the
above improvements to be deployed even for a 64-bit block
cipher.

2.6 ESP Trailer Oracles
Our attacks will make use of ESP trailer oracles, a con-

cept introduced in [5] as an extension of the padding oracle
concept from [22]. Such an oracle tells the attacker whether
or not the trailer fields (including padding, pad length and
NH bytes) of an encryption-only ESP-protected packet are
correctly formatted. It is shown in [5] how repeated access to
such an oracle allows an attacker to decrypt ESP-protected
ciphertext blocks in a byte-by-byte fashion, at a cost of at
most 216 queries to the oracle to extract the rightmost 2
bytes of the target block and at most 28 queries for each
remaining byte of the target block. We describe this attack
in outline next.

Suppose we have a carrier packet that is protected by ESP
in tunnel mode, and a target ciphertext block C∗

i (from any
packet protected by the same key K). The rightmost 2 bytes
of C∗

i are extracted as follows. We splice blocks R,C∗

i onto
the end of the carrier packet, and submit this new packet to
the oracle. Here R is a randomly selected block. By vary-
ing the rightmost 2 bytes of R in a systematic fashion, we
can explore all possible values of the rightmost 2 plaintext
bytes in the block R⊕ dK(C∗

i); these are interpreted as the
PL and NH bytes of the ESP trailer by the oracle, and it
is argued in [5] that, with high probability, only the values
00,04 for these bytes will produce a positive response from
the oracle. Once the oracle responds positively, the corre-
sponding original plaintext bytes from Ci−1 ⊕ dK(C∗

i) can
be easily recovered by simple XOR arithmetic. The attack
is then extended to plaintext bytes further to the left in the
block by trying to construct longer valid trailer byte pat-
terns, starting with 01,01,04. Further details can be found
in [5].

This leaves the question of how to construct an ESP trailer
oracle. This problem was solved in [5] for the encryption-

only case by constructing a special packet that, providing the
packet was not dropped because of a failure of ESP’s padding
checks, always generated some kind of error response. Usu-
ally this takes the form of an ICMP message. In [5], for
tunnel mode, encryption only ESP, this was done by using
CBC bit flipping and checksum correction to create a packet
whose inner packet had an unsupported protocol field. The
resulting ICMP message is usually transmitted in encrypted
form on the IPsec tunnel, but it was shown in [5] how such
messages can be detected based on characteristic lengths or
via timing correlation.

In summary, to mount this kind of attack, we need a car-
rier packet that produces a detectable response whenever
ESP’s trailer formatting checks pass. In [5], this required
modification of IP header fields in the inner packet. This
clearly creates a problem when the inner packet is protected
by AH, as it is in the situations we are interested in here:
now modifications to header fields may be detected by AH
processing and the packets dropped, causing the oracle to
be lost. An extra level of complication arises if AH’s re-
play protection is enabled: now, each carefully-constructed
carrier packet can only be used once, since if it were to be
repeated, its inner packet would be deemed to be a replay
during AH processing and so dropped, again causing the
ESP trailer oracle to be lost. Finally, we also want to con-
sider transport mode configurations of IPsec, and additional
ideas are needed to cater for this.

As we explain in the sections that follow, all of these prob-
lems can be overcome and appropriate ESP trailer oracles
constructed.

3. ATTACKS

Requirements.
We have the following requirements for all of the attacks

in this paper:

1. IPsec is used between a pair of security gateways GA

and GB ; these gateways could be stand-alone or could
be providing security for pairs of communicating hosts
HA and HB located behind the gateways as illustrated
in Figure 3. This is a common, basic VPN configura-
tion of IPsec.

2. The cryptographic keys used in AH and ESP for IPsec
processing at GA and GB are fixed during the attack;

3. The attacker can monitor and record traffic flowing
between the two gateways;

4. The attacker can inject modified datagrams into the
network between GA and GB .

In addition, for some of the attacks where the optional AH
sequence number checking is enabled, we will require that
the attacker is able to control the flow of legitimate packets
between GA and GB to some extent. In practice, this could
be achieved by an attacker who controls a router located
between the gateways.

We begin by describing our three basic attack ideas in the
context of the IPsec configuration that first applies AH in
transport mode and then ESP (encryption only) in tunnel
mode to packets flowing from GA to GB. This seems to
us to be the most natural MAC-then-encrypt configuration,

IPsec tunnel

Gateway G Gateway G

A

B

A B

Host H

Host H

Figure 3: Network set-up.

and it also turns out to be the easiest to attack. We then
go on to explain how to extend the attacks to other MAC-
then-encrypt configurations. In each case, we explain how to
recover the plaintext block corresponding to a single target
ciphertext block C∗

i . Of course, all of the attacks extend to
multiple blocks in the obvious way.

3.1 Attacks Against AH Transport + ESP Tun-
nel

Here, the sequence of headers and trailers in the packets
that are generated by IPsec is:

oIP ESPh iIP AH ULP TFC ESPt

where:

• oIP refers to the outer IP header,

• ESPh refers to the ESP header, following which all
data fields are encrypted.

• iIP refers to the inner IP header,

• AH refers to the AH fields, including the AH MAC
field and sequence number, with the scope of the MAC
covering iIP, AH and ULP fields.

• ULP refers to the upper layer protocol data unit (e.g.
a TCP or UDP message),

• TFC refers to optional TFC padding, and

• ESPt refers to the ESP trailer fields, including padding,
and the PL and NH bytes.

3.1.1 Attack 1: A Chosen Plaintext Attack
Our first attack requires a single chosen plaintext and can

recover arbitrary IPsec-protected plaintext. The attack ex-
ploits the fact that neither TFC padding nor ESP’s normal
encryption padding are protected by AH’s MAC, and that,
in accordance with [15], these bytes are discarded by the
receiver before the inner packet is passed to AH.

Suppose for now that AH replay protection is disabled,
and recall that ESP replay protection will always be dis-
abled in this configuration. Suppose the attacker has avail-
able a single IPsec-protected packet of the above form, for
which the inner packet has as its payload an ICMP echo
request (i.e. the ULP block contains such an ICMP mes-
sage), which can be directed either to the gateway GB itself
or to a host behind that gateway. Clearly, if this packet is
injected into the network towards GB , we will see an (en-
crypted) ICMP echo reply message in the reverse direction
on the VPN between GA and GB . Moreover, because AH
and ESP sequence number checking is disabled, this packet,
if repeatedly injected into the network, will always cause
such a response. This packet can be used directly as a car-
rier in an ESP trailer oracle attack, as described in Section
2.6. Here, ESP’s handling of TFC bytes ensures that the
inner packet presented to AH after ESP processing at GB

always passes AH’s MAC check, even after the blocks R,C∗

i

have been spliced onto the carrier packet. This is because
after the ESP trailer is checked and removed, any remaining
plaintext resulting from the spliced blocks together with the
original ESP trailer will be interpreted as TFC padding and
discarded. Moreover, none of these discarded bytes are cov-
ered by AH’s MAC. So, with a single chosen plaintext and
an average of slightly more than 215 trial packet injections,
any complete block of plaintext can be recovered.

This attack applies no matter what are the key-size and
block-size of ESP’s encryption algorithm. It can also be ap-
plied if the ULP block carries TCP instead of ICMP: now
every received TCP segment provokes a TCP ACK packet
of some type in response, so every modified carrier packet
that passes ESP processing at GB will generate a detectable
message in the reverse direction. Even if the TCP connec-
tion for the TCP segment in the carrier packet is already
closed, a TCP RST packet will be sent in response, so our at-
tacker will always get the response he requires. This applies
whether the endpoints for the TCP connection are the gate-
ways themselves or hosts behind these gateways. Assuming
that ULP carries a TCP message is a mild chosen plain-
text assumption. This can be replaced by an even weaker

assumption by simply observing packets to see which ones
generate replies, and then using one of those packets as the
carrier packet.

Attack 1 with AH replay protection enabled.
We can extend the above attack to the case where se-

quence number checking is on. The attacker first gathers,
for each byte (or pair of bytes in case of the rightmost bytes)
of plaintext that he wishes to extract, a packet that is ex-
pected to generate a reply. These packets might carry ICMP
or TCP, for example. We make the assumption that the at-
tacker can put these carrier packets in order of (roughly)
increasing AH sequence number. This is reasonable, since
they are likely to be intercepted in such an order. The at-
tacker also needs to control the flow of packets on the net-
work so that the sequence numbers in his carrier packets are
always seen as being “fresh” during any AH processing at
GB for the duration of his attack. This can be achieved by
firstly blocking all other packets from GA to GB except the
attacker’s carrier packets during the attack, and secondly
by switching to the next carrier packet each time a response
packet is detected on the VPN between GA and GB . The
latter step coupled with our assumption about AH sequence
number ordering ensures that, each time ESP trailer pro-
cessing completes and AH processing is done, packets are
not rejected by AH because they have repeated (or old) se-
quence numbers. Otherwise, the attack is as before.

For ease of presentation, we have described a simple ver-
sion of the attack that requires the attacker to control the
flow of traffic during the attack. It can be adapted to be
less disruptive to traffic flow by making use of carrier pack-
ers as they become available to the attacker, but this would
be more complex to implement.

The only drawbacks of Attack 1 are its very mild assump-
tions about the nature of plaintexts, its consumption of mul-
tiple carrier packets when AH replay protection is enabled,
and the complexity of implementing the attack in a non-
disruptive manner in this case.

3.1.2 Attack 2: TTL Expiry
Our second attack exploits the fact that the AH MAC

cannot cover all the fields of the inner header, iIP. In par-
ticular, the TTL and checksum fields are unprotected and
so can be manipulated by the attacker. This attack allows
us to relax the plaintext requirements in comparison to the
previous attack. However, we require that IP packets on the
VPN are directed to hosts behind GB . Again, we begin by
assuming that AH replay protection is disabled.

Attack 2, Step 1.
We begin with a one-time preparation step. Suppose the

attacker captures an arbitrary IPsec-protected packet in-
tended for a host behind GB . The attacker can manipulate
bits in the IV of the CBC-mode ciphertext after the ESP
header, with the effect of reducing the TTL field in the inner
header to 0. This requires the header checksum to be cor-
rected, and here we rely on the improved method described
in Section 2.5. For example, supposing the TTL field’s orig-
inal value is 0x40, then on average 2 trials are needed, while
if the original value is 0xFF, then on average 6.75 trials are
needed. Alternatively, we might only assume that the TTL
field is uniformly distributed; then, by carefully scheduling
the bit flips applied to the TTL and checksum fields in an

extension of the method of Section 2.5, we can simultane-
ously reduce the TTL field to 0 and correct the checksum
using an expected number of 382 trials.

In each case, after a certain expected number of trials, the
attacker succeeds in creating an IPsec-protected packet for
which the TTL field in iIP is 0, the checksum for iIP is cor-
rect, and the AH MAC on the inner packet verifies. Because
the inner packet should be forwarded to a host behind the
gateway GB, such an IP packet should always induce GB to
produce an ICMP response (of type 11 and code 0). We will
use this IP packet in step 2 as a carrier packet3.

Attack 2, Step 2.
The attacker now mounts an ESP trailer oracle attack

using the carrier packet constructed in step 1, splicing blocks
R,C∗

i onto the end of the carrier packet for different values
R, starting with the 216 variants in the rightmost 2 bytes
of R. As with Attack 1, we rely on ESP’s handling of TFC
bytes to ensure that the inner packet presented to AH after
successful ESP processing at GB always passes AH’s MAC
check, even with the blocks R,C∗

i spliced onto the carrier
packet. On average, after 215 trials, an ICMP response will
be detected in the reverse direction on the VPN between GA

and GB . This indicates a particular value of R for which the
packet ending in R,C∗

i passed the ESP trailer checks. The
attack now continues in the usual way.

This attack only applies for encryption algorithms with
128-bit block size, because we must be able to manipulate
the TTL field in the inner IP header, and this is located
beyond the first 64 bits of the header. In step 2, the attack
requires an average of 215 + 14 · 27 trial packet injections to
recover any complete 128-bit block of plaintext.

Attack 2 with AH replay protection enabled.
We can modify the above attack to cope with the sit-

uation where AH replay protection is enabled. The main
difference is that we can no longer re-use a single carrier
packet constructed in a first step, because once AH process-
ing has been triggered (after successful ESP processing), a
fixed carrier packet’s AH sequence number would always be
rejected thereafter. To overcome this, we combine the car-
rier packet generation and ESP trailer oracle steps. Thus,
for each choice of R used in a normal attack, we must splice
R,C∗

i onto a sequence of trial packets, with each trial start-
ing with a base packet and attempting to manipulate the
TTL field, correct the checksum, pass ESP trailer process-
ing, pass AH processing, and finally generate an ICMP mes-
sage. Clearly, for each success in this endeavour, the attacker
can extract 2 or 1 plaintext bytes (depending on whether the
rightmost bytes are being targetted or not), and must move
on to a new base packet with a fresh sequence number for
each success.

For an assumed inner TTL field of, say 0xFF, an average of
6.25× 216 trials are needed to extract the rightmost 2 bytes
of any block, and an average of 6.25×28 trials for each byte
thereafter. Extracting each block of plaintext requires the
attacker to have gathered 16 IPsec-protected packets with
roughly increasing AH sequence numbers, and also to block

3In the case when the starting value of the TTL field is
not known, we need to be careful to distinguish this ICMP
response from any other replies that may arise when the
IP header checksum is correct but the TTL has not been
successfully set to 0.

other traffic on the VPN while the attack is in progress. If
nothing is assumed about the starting TTL value, then the
attacker would first conduct a reconnaissance phase to as-
certain likely TTL values (since only a few possible different
values would be expected, depending on the particular OS
involved and the number of hops between the end host gen-
erating the inner packet and the gateway GA). This would
involve testing possible TTL value and checksum correction
masks in a systematic manner in an effort to produce an
ICMP response, with an expected number of 382 trials being
needed (assuming the TTL field is uniformly distributed).
Once the likely TTL values have been determined, the at-
tack can proceed as just described for known TTL values.
The attack can still be mounted without a reconnaissance
phase, or with unstable inner TTL field values, but it be-
comes rather expensive in terms of the number of packet
injections needed.

3.1.3 Attack 3: Fragmentation
In the previous two attacks we endeavoured not to tamper

with authenticated portions of payloads, instead making use
of intercepted packets that generate some form of reply at
the receiver, or by manipulating portions of the ESP pay-
load that are not protected by AH. Our third attack adopts
a different approach, managing to avoid the plaintext re-
quirements of the previous two attacks. We now craft pack-
ets that will generate replies whilst completely bypassing
AH processing at the receiver. The basic idea is that, after
ESP decapsulation of a crafted packet, the receiver discovers
that the ESP payload contains only a fragment of the packet
that was originally protected by AH; since AH’s MAC can-
not be verified unless the receiver has the complete packet,
the MAC check will not occur and AH will enter a state in
which it waits for further fragments. Eventually, this state
will time-out, and generate an error message that is detected
by the adversary.

Attack 3, Step 1.
We begin with a one-time preparation step. Suppose the

attacker captures an arbitrary IPsec-protected packet in-
tended for GB . The attacker can manipulate bits in the
ID field and the MF and DF bits by flipping bits in the IV
of the CBC-mode ciphertext after the ESP header, with the
effect of turning the inner packet (that is still protected by
AH) into something that is interpreted by the receiver as a
fragment. Here, we need to set the MF bit, possibly unset
the DF bit, and then use the ID field to compensate the
checksum, as discussed in Section 2.5. (Alternatively, we
can manipulate the fragment offset and ID fields with simi-
lar results.) This can be done even for a block cipher having
a 64-bit block, and with a small number of trial masks to
determine how to flip bits in the IV. In fact, because of the
specific bit flips involved, at most 17 trial packets are needed.
The attacker injects all the trial packets in rapid succession,
then waits. All the packets will be successfully processed
by ESP at GB , where all but one will have incorrect check-
sums and be dropped silently by the gateway. The one that
has a correct checksum will be interpreted as a fragment, so
IPsec will wait for the arrival of further fragments in an at-
tempt to reassemble the original packets before any further
AH processing takes place at GB . Eventually, because the
further fragments never arrive, the first remaining fragment
provokes the production of an ICMP fragment reassembly

time exceeded message (of type 11 and code 1) in the re-
verse direction on the VPN between GA and GB , as per
Section 2.3. Because of the predictability of the time-out in-
terval, the attacker can correlate the time of appearance of
this packet with the time of injection of the trial packets to
determine exactly which trial packet was the first one with
a correct checksum. This trial packet will be the attacker’s
carrier packet for the second step in the attack. Note that,
whenever this packet is injected into the network towards
GB , it will eventually produce an ICMP response after a
suitable time-out period.

Attack 3, Step 2.
Now that the preparation phase is complete, the attacker

has a carrier packet that can be used to create an ESP trailer
oracle. This step works largely as before: the attacker splices
blocks R,C∗

i onto the end of the carrier packet for different
values R, starting with the 216 variants in the rightmost 2
bytes of R. Here C∗

i is any target block. He injects these
216 trial packets into the network towards GB , looking for an
ICMP message in the reverse direction. He correlates the ap-
pearance time of the ICMP message with the injection time
of trial packets in order to identify the value of R which led
to the ICMP message being produced, again using the pre-
dictable nature of the fragmentation time-out. The packet
with this value of R must have passed ESP processing, indi-
cating that its trailer field ended with the bytes 00,04. From
this, the rightmost 2 bytes of C∗

i can be deduced in the usual
way. The attacker now continues to extract bytes further to
the left, again by modifying R, creating trial packets, inject-
ing them and correlating the appearance time of the ICMP
message with the injection time of trial packets to identify
the successful value of R. Each subsequent plaintext byte
that is extracted needs the injection of 28 trial packets.

The modifications made to the inner packet in this attack
do not cause any problems for AH processing, because the
attack bypasses this processing. In this sense, the attack
exploits the non-atomic nature of IPsec processing, and the
complexities arising from IPsec needing to support IP frag-
mentation. It works for 64-bit and 128-bit ciphers (using
the fact that checksums can be corrected by manipulating
the ID field for the 64-bit case). It has no known or cho-
sen plaintext requirements and extracts complete plaintext
blocks. Its only disadvantage is that, no matter how fast the
attacker can inject the (roughly) 216 trial packets needed, he
must wait for the IP fragmentation time-out after each pair
of bytes/individual byte. As noted previously, this time-out
is recommended to be 60-120 seconds, though it is only 15
seconds in the OpenSolaris implementation. This, then, is
the limiting factor for the rate at which the attacker can
extract plaintext.

Attack 3 with AH replay protection enabled.
The key feature of this attack is that AH processing is

bypassed altogether. Thus, the carrier packet created in
step 1 of the attack continues to produce IP fragmentation
time-outs even when used repeatedly in step 2. So, in this
case, enabling AH replay protection does not present any
additional barrier to the attack. In fact this attack is much
easier to mount than our first two attacks when AH replay
protection is enabled, because it has no chosen plaintext
assumptions, only a single packet is needed in the attack,
no control over the traffic flow is needed, and it avoids the

complications required to implement the previous attacks
without disrupting the traffic flow.

3.2 Attacking Other Configurations
Having given a detailed discussion of three different at-

tack types against the “AH Transport + ESP Tunnel” con-
figuration, we move on to other configurations in which AH
is followed by encryption-only ESP. We omit discussion of
“ESP (auth only) + ESP (enc only)” configurations: since
the scope of AH’s integrity protection is always greater than
that of ESP, it is easy to see that any attack against some
“AH + ESP”configuration will also apply to the correspond-
ing “ESP (auth only) + ESP (enc only)” configuration.

AH Tunnel + ESP Tunnel.
Here the format of the IPsec-protected packets is:

oIP ESPh iIP AH iiIP ULP TFC ESPt

where now there are 3 IP headers, an outer header, an inner
header and an “inner-inner” header. Here, Attacks 1 and 3
still work with simple modifications, but Attack 2 does not,
since the TTL field that needs to be manipulated is the one
in iiIP, and this is protected by AH (and cannot be reached
from ESP’s IV any more).

AH Tunnel + ESP Transport.
Here the format of the IPsec-protected packets is:

oIP ESPh AH iIP ULP TFC ESPt

Here, Attack 2 does not work, since this attack needs to
manipulate fields in iIP which can no longer be reached from
ESP’s IV because of the intervening AH bytes. In Attack 3
we forge an ESP datagram whose payload contains only a
fragment of an AH-authenticated IP packet. This is only
allowed to happen when ESP is in tunnel mode; in fact
there is no way of indicating such an instance when ESP
in transport mode is used. As such, Attack 3 cannot be
mounted either.

Attack 1 requires some extra assumptions to make it work
in this configuration. Firstly, the “expected” value of the
NH byte in ESPt is 51, indicating AH as the next protocol,
rather than 04 as before. However, it may be that more
byte values are accepted here by IPsec processing, depend-
ing on how liberal the IPsec policies are at the gateway.
This increases the success probability when extracting the
rightmost 2 bytes, but may leave some uncertainty about
the exact value of the rightmost byte of the recovered plain-
text block. In practice, only 51 for the NH byte will lead to
the production of a response message, since other values will
lead to the AH data bytes being misinterpreted as coming
from a different upper layer protocol, and the data will most
likely not be correctly formatted for that protocol.

Secondly, the attacker relies on ESP processing at GB to
interpret the original data in ESPt and some of the bytes
in the spliced blocks R,C∗

i as being TFC padding, and to
be able to remove these bytes before submitting a packet of
the form oIP–AH–iIP–ULP to AH processing. For, other-
wise, the packet would contain extra bytes and these would
cause the AH MAC verification to fail. This requires the
ESP implementation at GB to support TFC padding for
transport mode ESP, and to know how to inspect the AH

and iIP length fields to calculate how many bytes of data
should remain after TFC padding has been removed. This
places greater expectations on the IPsec implementation,
though [15, Section 2.7] states that an IPsec implementa-
tion SHOULD be capable of this behaviour.

AH Transport + ESP Transport.
Here the format of the IPsec-protected packets is:

IP ESPh AH ULP TFC ESPt

where now only a single IP header is present. This configu-
ration was explicitly ruled out in the previous IPsec architec-
ture [13], and so is not supported by some implementations
(e.g. OpenSolaris) but is by others (e.g. Linux). Here Attack
2 fails because there is no inner IP header to manipulate, and
Attack 3 does not work, since ESP is in transport mode.

Attack 1 requires some modification in order to work. As
with the previous attack, the NH byte in ESPt is now ex-
pected to have value 51, and the attacker must rely on ESP
processing at GB to accurately handle TFC padding. This
requires the ESP implementation at GB to support TFC
padding for transport mode ESP and the upper layer proto-
col to include an explicit length field, ruling out the use of
TCP in the payload of the carrier packet. This means that
we are restricted to using ICMP (or perhaps some kind of
UDP packet that always produces a response). Otherwise,
the attack works as described previously.

4. EXPERIMENTAL RESULTS
Having described how our attacks should operate for an

RFC-compliant implementation of the RFCs, we now turn
to their experimental validation.

Our experimental set-up is composed of two desktop ma-
chines acting as the two stand-alone gateways, a laptop act-
ing as the attacker’s platform, and a 10 Mbit Hub. The
gateways run OpenSolaris build 134, whereas the attacker’s
platform runs Linux 2.6. We implemented our attacks in
Python 2.6.4 and used Scapy 2.0 to intercept and manipu-
late IP packets and to re-inject them into the network. We
decided to use OpenSolaris because it can be configured to
perform full padding checks on ESP-protected packets as
recommended by [15]. In our experiments, the two gate-
ways were configured to protect their communications using
AH in transport mode followed by ESP in tunnel mode, as in
the example configuration of Section 3.1. We have not tested
our attacks on the other MAC-then-encrypt configurations,
but we see no reason why they should not be successful.

We successfully implemented Attacks 1 and 3 on the afore-
mentioned configuration, with the AH replay protection ser-
vice both disabled and enabled. In OpenSolaris, when keys
are set up manually, then replay protection is disabled and
there is no way of enabling it (in conformance with [14]).
Thus we used manual keying for the scenario where replay
protection is disabled, and enabled automated key exchange
using IKE in order to turn on the replay protection service.
Attack 2 works by generating an ICMP message at the point
where the IPsec gateway is about to forward the decrypted
packet to the end host in the protected network. As men-
tioned above, this attack works only when AH is applied in
transport mode followed by ESP in tunnel mode. However
we discovered that in OpenSolaris, it is not possible to for-
ward packets that are protected by AH in transport mode,

preventing us from testing Attack 2 in our experimental set-
up. This seems to be a design decision by the OpenSolaris
developers: such configurations are perfectly in line with the
IPsec RFCs.

All of our attacks rely on the production of ICMP mes-
sages, so one might be concerned about the effects of ICMP
rate limitation. However, this is not an issue in practice be-
cause of the relatively slow speed at which the ICMP packets
are produced. In fact the main complication that arises in
practice for our attacks is the problem of distinguishing the
desired response packets from other IPsec-protected traffic
on the VPN. This of course depends on the amount of traffic
present on the network. As a first step, if the attacker is able
to predict the length of the response packet, then he can fil-
ter out all packets whose length does not match this value,
and thereby significantly reduce the rate of false positives.
If length filtering is not enough or not possible, then one can
filter on the basis of “causation”: assuming no network con-
gestion, a response is expected to be seen almost instantly
after the packet that caused it was received by the gateway.
That is, with sufficiently high probability, the attacker can
expect to observe the response within a short time interval
of the packet having a correct ESP trailer being sent. The
time interval should be short enough that the probability of
a false positive appearing within the interval is low. Thus
the attacker allows a time interval δt between each attack
packet that he sends. Once the attacker has detected what
he suspects to be a response packet, he can confirm that
this was indeed the case by retesting and checking whether
a response is again sent within time δt (this will require the
use of a fresh carrier packet whenever replay protection is
enabled). This can be repeated multiple times in order to
boost the confidence of the detection procedure. Thus in
scenarios with high network traffic levels, the attacks may
still be realised at the expense of efficiency. Alternatively, if
replay protection is disabled or Attack 3 based on fragmen-
tation is used, the attacker can simply capture the packets
that are of interest to him and wait for a period of low net-
work traffic in order to carry out his attack.

In our set-up we had minimal spurious network traffic
and thus basic filtering based on packet lengths was suffi-
cient. The most computationally intense part of each attack
is to extract the rightmost two bytes of the target ciphertext
block. Given that we could distinguish a response packet
from other traffic accurately enough, we adopted the follow-
ing strategy in order to speed up the Attack 1: we transmit-
ted all 216 packets at a rate almost equal to the network’s
capacity. As soon as a response packet was detected, we
replayed the last few packets spaced at a greater interval,
in order to pinpoint the exact packet which generated the
response. We also followed this approach in order to extract
the rest of the bytes. On a 10Mbit hub, Attack 1 took on
average 70 seconds to recover a 128-bit block of plaintext
using a 140-byte carrier packet. It should be noted that if
replay protection is enabled, then Attack 1 needs 30 fresh
packets to recover a block of plaintext in the manner just
described. On the other hand it is possible to sacrifice the
attack’s time efficiency by transmitting packets at a lower
rate such that a packet generating a response can be im-
mediately identified, thereby requiring only 15 fresh packets
per 128-bit block of plaintext.

For Attack 3, a similar strategy was adopted. Now the or-
acle response is only output after the IP fragment reassembly

has timed out. In OpenSolaris the default time-out value is
15 seconds. In order to match a response to the packet that
generated it, we keep a list of the time instants at which
each packet was sent. Then if a response is seen at some
time t we search our list for packets that were sent near to
the time t− ttime-out. This scheme was combined with the
method described above where packets are initially sent in a
burst, and then two replies are required to accurately locate
the packet generating the response. In our experiments, we
could locate the packet to lie within a range of roughly 20
packets with the first response, and then replay each packet
at intervals of 0.2 seconds and use the second response to
locate the desired packet exactly. Following this approach
with our experimental set-up Attack 3 recovered a 128-bit
block of plaintext in roughly 10 minutes.

5. CONCLUSIONS
In this paper, we have demonstrated attacks against all

MAC-then-encrypt configurations of IPsec. These show that
such configurations should be avoided in IPsec deployments.
We have not found any attacks against encrypt-then-MAC
configurations of IPsec.

Support for AH is no longer required in IPsec implemen-
tations“because experience has shown that there are very few
contexts in which ESP cannot provide the requisite security
services” [13]. Our work shows that the only configurations
where ESP alone cannot easily mimic what can be done us-
ing AH and ESP in combination, namely those using AH
followed by ESP, are actually insecure. So not only is AH
not very useful, it could actually be considered harmful. The
removal of AH from the IPsec standards is already under
way: support for AH is not required in the current IPsec ar-
chitectural RFC [13], whereas it was in the previous version
[10]. Our results should provide motivation to accelerate
this process.

Our attacks demonstrate the dangers inherent in expos-
ing cryptographic flexibility to users. IPsec in particular
places a significant burden on network administrators, re-
quiring them to have sufficient cryptographic expertise in
order to select secure configurations. Nothing prevents cu-
rious administrators from going “off piste” or protects them
from bad advice, such as that to be found in [6, 7, 21] for
example. We hope that the attacks given here will illustrate
some of the dangers in an accessible form.

Our view of IPsec echoes that expressed in [6]: IPsec, in
attempting to be “all things to all men” ends up compromis-
ing on security. It would be helpful to standardise IPsec pro-
files addressing particular application scenarios rather than
allowing a set of components that can be combined and con-
figured in different ways to achieve arbitrary goals. This is
because predicting the combined security of distinct cryp-
tographic primitives is quite difficult and requires thorough
analysis. While theoretical cryptography has much that is
useful to say on this subject [2, 16], it currently falls short of
being able to give truly meaningful security guarantees for
cryptographic primitives as they are deployed in real proto-
cols. Recent work [19, 20] has started to address this gap,
but there is much still to be done to bridge theory and prac-
tice in this area.

6. REFERENCES
[1] S. Bellovin, “Problem Areas for the IP Security

Protocols.” In Proceedings of the Sixth Usenix Unix
Security Symposium, pp. 1–16, San Jose, CA, July
1996.

[2] M. Bellare and C. Namprempre, “Authenticated
Encryption: Relations Among Notions and Analysis of
the Generic Composition Paradigm.” In T. Okamoto,
ed., Asiacrypt 2000, LNCS Vol. 1976, Springer, 2000,
pp. 531-545.

[3] R. Braden, editor, “Requirements for Internet Hosts –
Communication Layers”, RFC 1122, Oct. 1989.

[4] B. Canvel, A.P. Hiltgen, S. Vaudenay and
M. Vuagnoux, “Password Interception in a SSL/TLS
Channel.” In D. Boneh (ed.), CRYPTO 2003, LNCS
Vol. 2729, Springer, 2003, pp. 583-599.

[5] J.P. Degabriele and K.G. Paterson, “Attacking the
IPsec Standards in Encryption-only Configurations.”
In IEEE Symposium on Privacy and Security, IEEE
Computer Society, 2007, pp. 335-349.

[6] N. Ferguson and B. Schneier, “A Cryptographic
Evaluation of IPsec”, 2003. Available from
http://www.schneier.com/paper-ipsec.pdf

[7] N. Ferguson, B. Schneier and T. Kohno. Cryptography
Engineering. John Wiley & Sons, 2010.

[8] R. Housely, “Using Advanced Encryption Standard
(AES) Counter Mode With IPsec Encapsulating
Security Payload (ESP)”, RFC 3686, Jan. 2004.

[9] C. Kaufman, editor, “Internet Key Exchange (IKEv2)
Protocol”, RFC 4306, Dec. 2005.

[10] S. Kent and R. Atkinson, “Security Architecture for
the Internet Protocol”, RFC 2401, Nov. 1998.

[11] S. Kent and R. Atkinson, “IP Authentication Header”,
RFC 2402 (obsoletes RFC 1826), Nov. 1998.

[12] S. Kent and R. Atkinson, “IP Encapsulating Security
Payload (ESP)”, RFC 2406, Nov. 1998.

[13] S. Kent and K. Seo, “Security Architecture for the
Internet Protocol”, RFC 4301 (obsoletes RFC 2401),
Dec. 2005.

[14] S. Kent, “IP Authentication Header”, RFC 4302
(obsoletes RFC 2402), Dec. 2005.

[15] S. Kent, “IP Encapsulating Security Payload (ESP)”,
RFC 4303 (obsoletes RFC 2406), Dec. 2005.

[16] H. Krawczyk. The Order of Encryption and
Authentication for Protecting Communications (or:
How Secure is SSL?). In J. Kilian, ed., CRYPTO
2001, LNCS Vol. 2139, Springer, 2001, pp. 310-331.

[17] V. Manral, “Cryptographic Algorithm Implementation
Requirements for Encapsulating Security Payload
(ESP) and Authentication Header (AH)”, RFC 4835,
April 2007.

[18] K.G. Paterson and A.K.L. Yau, “Cryptography in
Theory and Practice: The Case of Encryption in
IPsec.” In S. Vaudenay (ed.), EUROCRYPT 2006,
LNCS Vol. 4004, Springer, 2006, pp. 12-29.

[19] K.G. Paterson and G.J. Watson,
“Plaintext-Dependent Decryption: A Formal Security
Treatment of SSH-CTR.” In H. Gilbert (ed.),
EUROCRYPT 2010, LNCS Vol. 6110, Springer 2010,
pp. 345-361. Full version available from
http://eprint.iacr.org/2010/095.

[20] P. Rogaway and T. Stegers, “Authentication without
Elision: Partially Specified Protocols, Associated
Data, and Cryptographic Models Described by Code.”
In CSF 2009, IEEE Computer Society, pp. 26-39.

[21] W. Stallings. Network Security Essentials:
Applications and Standards, 3rd edition. Pearson
Education, 2008.

[22] S. Vaudenay, “Security Flaws Induced by CBC
Padding – Applications to SSL, IPSEC, WTLS...” In
L.R. Knudsen (ed.), EUROCRYPT 2002, LNCS Vol.
2332, Springer, 2002, pp. 534-545.

[23] D. Wagner and B. Schneier, “Analysis of the SSL 3.0
Protocol.” In The Second USENIX Workshop on
Electronic Commerce, USENIX press, 1996.

