A Surfeit of SSH Cipher Suites

Martin R. Albrecht, Jean Paul Degabriele, Torben B. Hansen
and Kenneth G. Paterson

ACM CCS - 27/10/2016

WZ/ONC/ONC/ONCZONCZONO/INOAINOA

ROYAL
HOLLOWAY
UNIVERSITY

OOOOOOOO

SS70NeA0

Outline of this talk

* Overview of SSH and related work.

* SSH deployment statistics.
* Anew attack on CBC-mode in OpenSSH.

* Security analysis of ‘new’ OpenSSH AE modes.

I I I I I DN,
S
I‘ AL‘L‘ yAx‘x‘A‘L‘x‘ AL‘ Ak‘ 74 ;‘.\.‘
T:
S

LS

L=

29 039 & _
‘ ‘k‘ Ak‘ ‘ ﬁ‘
N7 EE % & % & % & % & % & % & % £
DEISEINE DE SN HEI SN

Overview of SSH and Related Work

NZONGZON 0 AN 5 "

The SSH Binary Packet Protocol (RFC 4253)

Sequence Packet Pad
Number 4 Length 4| Len 1

e

Ciphertext MAC tag

Payload Padding 4

* Encode-then-Encrypt&MAC construction, stateful because of inclusion of 4-byte
sequence number.

* Packet length field measures the size of the packet: |[PadLen|+ |Payload| + |Padding].

* RFC 4253 (2006): various block ciphers in CBC mode (with chained IV) and RC4.
* RFC 4344 (2006): added Counter mode for the corresponding block ciphers.

Timeline of related work on SSH-BPP

2002.

* Formal security analysis of SSH-BPP by Bellare, Kohno and Namprempre
[BKNo2]. They introduced an extended security model and proved SSH-CTR
and SSH-CBC variants (w/o IV chaining) secure.

20009.

* Albrecht, Paterson and Watson [APWog] found a plaintext-recovery attack
against SSH in CBC mode.

* The leading implementation was OpenSSH (reported 80% of servers), and
they released a patch in version 5.2 to stop this specific attack on CBC mode.

* The attack exploited fragmented delivery in TCP/IP, and worked on all CBC
variants considered in [BKNo2].

Timeline of related work on SSH-BPP

2010.
* The [APWog] attack highlighted a deficiency in the [BKNo2] security model.

* Paterson and Watson [PW210] prove SSH-CTR secure in an extended model
that captures fragmented delivery of ciphertexts.

2012.

* Boldyreva, Degabriele, Paterson and Stam [BDPS12] study ciphertext
fragmentation more generally, addressing limitations in the [PW10] model.

* Furthermore they consider boundary hiding and resistance to a special
type of denial of service attack as additional security requirements.

* Both aspects are inherently related to ciphertext fragmentation and
correspond to the SSH design choices of encrypting the length field and
validating its contents.

BEBB BB LB
TR BB R
ﬁ&@@ﬁﬁﬁﬁﬁﬁ

<

i”@@##ﬁ@@@

R RRB BB R

20 e &>
SSH Deployment Today

R AT

SSH deployment today

* We performed a measurement study of SSH deployment.

* We conducted two IPv4 address space scans in Nov/Dec
2015 and Jan 2016 using ZGrab/ZMap.

* Grabbing banners and SSH servers’ preferred algorithms.

* Actual cipher used in a given SSH connection depends on client
and server preferences.

* Roughly 224 servers found in each scan.

* Nmap fingerprinting suggests mostly embedded routers
and firewalls.

The state of SSH today: SSH versions

software scan 2015-12 scan 2016-01
dropbear_2014.66 7,229,491 (42.0%) 8,334,758 (47.0%)
OpenSSH_5.3 2,108,738 (12.3%) 2,133,772 (12.0%)
OpenSSH_6.6.1pl 1,198,987 (7.0%) 1,124914 (6.3%)
OpenSSH_6.0pl 554,295 (3.2%) 573,634 (3.2%)
OpenSSH_5.9pl 467,899 (2.7%) 500,975 (2.8%)
dropbear_2014.63 422,764 (2.5%) 197,353 (1.1%)
dropbear_0.51 403,923 (2.3%) 434,839 (2.5%)
dropbear_2011.54 383,575 (2.2%) 64,666 (0.4%)
ROSSSH 345,916 (2.0%) 333,992 (1.9%)
OpenSSH_6.6.1 338,787 (2.0%) 252,856 (1.4%)
dropbear_0.46 301,913 (1.8%) 335,425 (1.9%)
OpenSSH_5. 5pl 262,367 (1.5%) 272,990 (1.5%)
OpenSSH_6. 7pl 261,867 (1.5%) 213,843 (1.2%)
OpenSSH_6.2 255,088 (1.5%) 288,710 (1.6%)
dropbear_2013.58 236,409 (1.4%) 249,284 (1.4%)
dropbear_0.53 217,970 (1.3%) 213,670 (1.2%)
dropbear_0.52 132,668 (0.8%) 136,196 (0.8%)
OpenSSH 110,602 (0.6%) 108,520 (0.6%)
OpenSSH_5.8 88,258 (0.5%)
OpenSSH_5.1 86,338 (0.5%)
OpenSSH_5.3pl 84,559 (0.5%)
OpenSSH_7.1 83,793 (0.5%)

The state of SSH today: SSH versions

software scan 2015-12 scan 2016-01
dropbear_2014.66 7,229,491 (42.0%) 8,334,758 (47.0%)
OpenSSH_5.3 2,108,738 (12.3%) 2,133,772 (12.0%)
OpenSSH_6.6.1pl 1,198,987 (7.0%) 1,124,914 (6.3%)
OpenSSH_6.0pl 554,295 (3.2%) 573,634 (3.2%)
OpenSSH_5.9pl 467,899 (2.7%) 500,975 (2.8%)
dropbear_2014.63 422,764 (2.5%) 197,353 (1.1%)
dropbear_0.51 403,923 (2. 434,839
dropbear_2011.54 383,575 (2.2%
ROSSSH 345,916 (2.0%
OpenSSH_6.6.1 338,787 (2.0% 252,
| dropbear_0.46 301,913 (1.8%) 335,42
OpenSSH_5. 5pl 262,367 (1.5%) 272,99
OpenSSH_6.7pl 261,867 (1.5%) 213,84
OpenSSH_6.2 255,088 (1.5%) 288,710
dropbear_2013.58 236,409 (1.4%) 249,284 (1.4%)
dropbear_0.53 217,970 (1.3%) 213,670 (1.2%)
dropbear_0.52 132,668 (0.8%) 136,196 (0.8%)
OpenSSH 110,602 (0.6%) 108,520 (0.6%)
OpenSSH_5.8 88,258 (0.5%) 89,144 (0.5%)
OpenSSH_5.1 86,338 (0.5%) 44,170 (0.2%)
OpenSSH_5.3pl 84,559 (0.5%) 0 (0.0%)
OpenSSH_7.1 83,793 (0.5%) 0 (0.0%)

The state of SSH today: SSH versions

software scan 2015-12 scan 2016-01
dropbear_2014.66 7,229,491 (42.0%) 8,334,758 (47.0%)
OpenSSH_5.3 2,108,738 (12.3%) 2,133,772 (12.0%)
OpenSSH_6.6.1pl 1,198,987 (7.0%) 1,124914 (6.3%)
OpenSSH_6.0pl 554,295 (3.2%) 573,634 (3.2%)
OpenSSH 5.9pl 467,899 (2.7%) 500,975 (2.8%)
dropbear_2014.63 422,764 (2.5%) 197,353 (1.1%)
dropbear_0.51 403,923 (2.3%) 434,839 (2.5%)
dropbear_2011.54 383,575 (2.2%) 64,666 (0.4%)
ROSSSH 345916 (2.0%) 333,992 (1.9%)
OpenSSH_6.6.1 338,787 (2.0%) 252,856 (1.4%)
dropbear_0.46 301,913 (1.8%) 335,425 (1.9%)
OpenSSH_5. 5pl 262,367 (1.5%) 272,990 (1.5%)
OpenSSH_6. 7pl 261,867 (1.5%) 213,843 (1.2%)
OpenSSH_6.2 255,088 (1.5%) (1.6%)
dropbear_2013.58 236,409 (1.4%) 249,2
dropbear_0.53 217,970 (1.3%) '
dropbear_0.52 132,668 (0.8%)
OpenSSH 110,602 (0.6%)
OpenSSH_5.8 88,258 (0.5%)

OpenSSH_5.1
OpenSSH_5.3pl
OpenSSH_7.1

86,338
84,559
83,793

The state of SSH today: preferred algorithms

encryption and mac algorithm count
aesl28-ctr + hmac-md5 3,877,790 (57.65%)
aesl28-ctr + hmac-md5-etm@ 2,010,936 (29.90%)
aesl28-ctr + umac-64-etm@ 331,014 (4.92%)
aesl28-cbc + hmac-md5 161,624 (2.40%)
chacha20-polyl1305@ 115,526 (1.72%)
aesl28-ctr + hmac-shal 68,027 (1.01%)
des + hmac-md5 40,418 (0.60%)
aes256-gcm@ 28,019 (0.42%)
aes256-ctr + hmac-sha2-512 17,897 (0.27%)
aesl28-cbc + hmac-shal 11,082 (0.16%)
aesl28-ctr + hmac-ripemdl60 10,621 (0.16%)

OpenSSH preferred algorithms (@ stands for (@openssh.com)

* Lots of diversity (155 combinations).
* (TR dominates, followed by CBC, surprising amount of EtM.
* ChaCha20-Poly1305 on the rise? (became default in OpenSSH 6.9).

* Small amount of GCM.

The state of SSH today: preferred algorithms

encryption and mac algorithm count
aesl28-ctr + hmac-shal-96 8,724,863 (90.44%)
aesl28-cbc + hmac-shal-96 478,181 (4.96%)
3des-cbc + hmac-shal 321,492 (3.33%)
aesl28-ctr + hmac-shal 62,465 (0.65%)
aesl28-ctr + hmac-sha2-256 36,150 (0.37%)
aesl28-cbc + hmac-shal 14,477 (0.15%)

Dropbear preferred algorithms

* Lessdiversity than OpenSSH.
* (TR also dominates, followed by CBC.

* No "exotic” options.

BB BBEBEEE

0.4’20
SRR o5

e € '
O} ONY

’:‘0 3 X IENEINENE
o

/\w'{ /.\1

An Attack on Patched OpenSSH with CBC

The [APWog] Attack (simplified)

* Decryption in OpenSSH:

The first block of a packet to be received is decrypted and the
length field LF is extracted.

It is then checked that 5 < LF <28, and if not an error is sent.

If the test passes, it waits until LF bytes are received and then
verifies the MAC.

* The number of bytes sent until a "MAC invalid” error is
observed leaks the value of LF.

* Any intercepted ciphertext block can be sent as the first
block, if successful the attack will recover its first 4 bytes.

The OpenSSH 5.2 patch

* Basic idea: make errors independent of LF.

* If the length check fails, do not send an error message, but
wait until 228 bytes have arrived, then check the MAC.

* If the length checks pass, but the MAC check eventually

fails, then wait until 28 bytes have arrived, then check the
MAC.

* No error message is ever sent until 218 bytes of
ciphertext have arrived.

* Cannolonger count bytes to see how many are
required to trigger MAC failure.

However an attack is still possible...

* One MAC check is done if length check fails: on 228
bytes.

* Two MAC checks are done if length checks pass: one
on roughly LF bytes, the other on 228 bytes.

* This leads to a timing attack which verifiably recovers
18 bits with success probability 228,

* Up to 30 bits may be recovered with more fine-
grained timing information.

* Version 5.2 + CBC mode preferred by roughly 20k
OpenSSH servers.

BB BBEBEEE

0.4’20
SRR o5

e € '
O} ONY

’:‘0 3 X IENEINENE
e

/\w'{ /.\1

Security Analysis of OpenSSH AE Modes

OpenSSH authenticated encryption modes

* Since [APWog] a number of new schemes have been
introduced in OpenSSH.

* AES-GCM: since v6.2; length field is not encrypted
but is instead treated as associated data.

* generic Encrypt-then-MAC (gEtM): since v6.2;
overrides native E&M processing; length field also not
encrypted but covered by the MAC.

® ChaCha2o-Poly13o5@openssh.com: since v6.5 and
promoted to default in v6.9; reintroduces encryption
of the length field.

ChaCha2o-Poly13o5@openssh.com

K, |
[SQN]54,B|k=[O]64

Packet
Length

4

Pad
Len

Payload

1

Padding >4

|:SQN]64,B|k=|:0]64E

0256

— >
[SQN]64,BIk=[1]64E

Ka

Kpo/y

MAC tag

Security analysis in the presence of fragmentation

* We used the framework of [BDPS12] to analyse the
security of these schemes.

* We identified and fixed a technical issue in the IND-sfCFA
confidentiality definition.

* Introduced a matching notion of ciphertext integrity,
INT-sfCTXT, which was not considered in [BDPSa2].

* We made an effort to reflect closely the OpenSSH code.

* Issue in gEtM: retrofitted in legacy E&M code - the MAC is
computed once the ciphertext has arrived but is not
compared to received MAC until after decryption!

Security analysis of ChaCha2o-Poly1305 in OpenSSH

IND-sfCFA || INT-sfCTF || BH-CPA || BH-sfCFA n-DOS-stCFA
CBC X v X X
fixed-CBC X ' X X
CTR X X
fgEtM v v/ X X X
AES-GCM v v/ X X X
ChaCha20-Poly1305 v v/ X X

Security comparison of SSH AE modes

* BH-CPA (passive adversary), BH-sfCFA (active adversary).

* n-DOS-sfCFA: inability to produce n-bit sequence of fragments that
produces no output (w/o limiting max packet size to n).

S
e
g 7N “

%&‘040006%

Concluding Remarks

O

Concluding Remarks

* We notified the OpenSSH team of our new attack on
CBC and the problem in generic EtM.

* Both issues were addressed in OpenSSH v7.3, released
in August 2016.

* None of the schemes in use possesses all security
properties that one may consider desirable for SSH.

* Yet such schemes do exist, e.g. InterMAC from
[BDPSa2].

S
e
g 0 “

€

RO

The End —ThankYou

